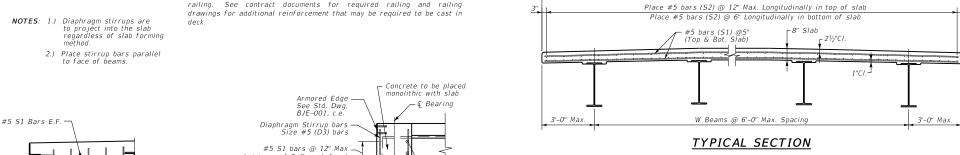
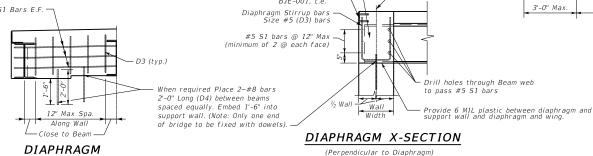


#5 Skewed Transverse Bar (S1) Length = $\frac{Bridge\ Width\ -\ 4"}{CT}$

$$* = \frac{\frac{1}{2} Wa}{SF}$$


Skew Factors	
Skew	SF
<i>0</i> °	1.000
5°	0.996
10°	0.985
15°	0.966
20°	0.940
25°	0.906
30°	0.866
35°	0.819
40°	0.766
45°	0.707
	•


NOTE: All reinforcing steel shall be epoxy coated

NOTE: It is recommended a crash tested barrier be attached to the Superstructure to contain all vehicles within the roadway. Recommended barriers include the Type T631 guardrail, Type 3, or 32" Vertical Face railing. See contract documents for required railing and railing deck.

Estimate of Steel Quantities = (Bridge Length-4in)*(Bridge Width-4in) * (3.129 lb/sq. ft. + 5.006 lb/sq. ft.)

out to out width of bridge

NOTE: End Diaphragms are required on both ends of Slabs.

D3 BARS Dim. "A" = Beam Depth + 4" Dim. "B" = (Wall Width - 4")

KENTUCKY DEPARTMENT OF HIGHWAYS COMPOSITE STEEL BEAM *SUPERSTRUCTURES* SLAB DETAILS

STANDARD DRAWING NQ. BSB-103 02-26-20 02-26-20